AUTHENTICATION AND ENCRYPTION FOR RADNET

Introduction

We propose to transfer cryptography technology that is operational and approved by the
IAEA to the RadNet standard. This transfer provides for a well proven implementation
with minimal development. The IAEA approval transfers the benefit of 3rd-party
vulnerability assessments and the confidence in the implementation that those assessments
provide.

We propose that both authentication and encryption be implemented in a way that is 1)
exportable, and 2) minimizes the complexity of the key management system. Both of these
implementation features are extremely important to the legal delivery of the systems abroad,
and to make such systems administratively feasible to organizations like the IAEA.

Background

The nomenclature that describes key use, generation, and distribution; and their use to
provide digital signatures and encryption is more than a little confusing. First, secret keys
are just that. They must be held secret or all security is lost. Secret key algorithms are
symmetric, that is, the encryption key is the same as the decryption key. If a secret key is
ever released, all the data encrypted with that key is compromised. Managing secret keys
requires vaults with secure computers and human delivery of keys. Public-key
cryptography is very different. Keys come in pairs: a private key that is kept secret and a
public key that can be posted on bulletin boards and the internet. The public-private pair is
not arbitrary; they are relatively prime with respect to modular exponentiation and need not
be the same length. The algorithms are not symmetric. Items encrypted with one member
of a pair can only be decrypted with the other member.

It is important to note that public-key authentication is transparent to data handling and
imposes very small administrative burdens for key-management. Encryption is exactly the
opposite. There is no possible way to make key-management transparent; in fact, the
concept is an oxymoron. The data messages are being inexorably scrambled by the
encryption. Any loss of keys, confusion in the distribution, or change of keys will
absolutely make the data involved totally unrecoverable. If this were not the case, the
encryption would be useless. Therefore, significant attention must be paid to key
management and distribution in order to preserve the long-term integrity of the data.

The methods we propose are based on public-key cryptography because it significantly
eases the key management burden when compared to other options.

Signing and Signature Verification (Authentication)

The objective of authentication is to allow anyone to verify the signature and thus be sure
that the attached data (message) is valid and has remained unaltered since the signature was
attached. A digital signature does not hide data from anyone; it is still plaintext.
Consequently, the entire original message is available for use by other applications as if the
signature were not present. To the extent that the original document contains information
that verifies the source of the data, then the digital signature also certifies that the data
originated from a specific sensor.

The signature is provided in two steps. In the first step, the transmitter’s public key is
appended to the message and the resulting combination is processed through a secure hash
function such as MD5. These functions are available from certified libraries and produce a

128-bit representation (digest) of the input that is sensitive to a change of only one bit in the
entire input. The second step is to encrypt the digest with the transmitter’s private key to
produce the signature. The signature is then appended to the compound structure to form
an authenticated message.

RadNet Header
DataGram] RSA MD-5
ataGram Hash
RadNet Footer Function
Public Key | P
| 128-bit Digest |
' N\
RadNet Header
DataGram]
Private Key {——»{ RSA Signature RadNet Footer Authenticated
Algorithm RadNet Message
| Public Key |
—’I Signature |

/

Because the public key is appended to the signed document, any receiver can verify the
authenticity of the message without access to the transmitter’s private key. Furthermore,
since no one has access to the private key, the signature cannot be forged.

The signature is verified by repeating the signing process. That is, the signature is
decrypted with the public key. Then the compound message without the signature is
submitted to the same hash function as the transmitter’s. If the resulting digest matches the
decrypted signature, the document is valid. Verification of messages can be centralized in a
server before distribution to the message processing clients; or each client can verify the
signatures. The choice of implementation would depend upon the system as a whole and
the actual end use. The signing and verification process remain unchanged.

In the RadNet domain, each UDP packet of a compound message would be independently
signed.

Encryption and Decryption

The encryption process is intended to prevent any unauthorized person from viewing the
data. However, encryption does not necessarily authenticate the data. Encryption
introduces a complication into the normal flow of data. Any part of the “message” that is
encrypted cannot be read by any application that does not decrypt it first. This can become
problematic if services are used to sort, route, store, or otherwise operate on the data or the
packet header. Consequently, encryption is not transparent as is authentication.

Conceptually, encryption operates like authentication run backwards. The recipient of the
data generates the key pairs, keeps the private key secret, and distributes the public key to
every device that will send data to the recipient. (In principle, there could be a key-pair for
every device) The public keys can be distributed over the Internet if desired. Each device
uses the public key for encryption. Once data is encrypted with the public key, only the
holder of the corresponding private key (the desired recipient) can decrypt and read the
data.

Because anyone with the public key can send data to the recipient, it is possible to “forge”
data. Therefore, it is always advisable that data be signed (authenticated) before it is
encrypted; and furthermore, that the keys used for encryption and authentication be
different.

Unfortunately, there is a pragmatic problem with encryption. Secret-key methods are fast;
but impose a nearly impossible key management burden on the user. Public-key methods
reduce the key management problem but are very slow and compute-intensive. In general
practice, a combination of the two methods is used. As shown at the top of the figure
below, each message is encrypted using a secret-key algorithm with a key that is uniquely
generated for each data package. Once the ciphertext is produced, the unique secret key is
encrypted using public key methods to produce a “cipher-key” The encrypted secret key
and the public key are pre-pended to the encrypted message to produce a “packet”. In
common practice, this technique is known as an “RSA envelope.”

RadNet Header S ymmeFric : Key
DataGram| Encryptlon Unique Secret Key |1— Generator
Algorithm

RadNet Footer

Public Key bl K
. ublic Ke
Algorithm y
h 4
i
\ 4
Public Key
]

The result is that the data is encrypted using a fast algorithm and the key for decrypting it is
distributed with the data in a way that can be recovered using the more complex public-key
algorithm. Further, each data object uses a unique key, so that an attacker would have to
cryptanalyze every data item independently; i.e. the key from one data item would have no
value for the next.

PROPOSED IMPLEMENTATION

Overview

In the sections that follow we propose methods for key generation at both the server and
the transmitting instrument, for signing the messages at the instrument and verifying them
at the server (authentication), and for encrypting signed messages at the instrument and
decrypting them at the server.

Key Generation

When using public-key methods it is not necessary to change keys frequently . In fact,
rigorous control of key change provides a simple but effective registry and obviates the
need for complex key management.

Transmitting Instrument

Keys must be generated within the transmitting instrument using random numbers that are
“sufficiently random for cryptography.” This precludes use of typical pseudo-random
number generators. Further, the key-pair must be stored in non-volatile memory so that the
keys survive power cycling. Finally, the private key must never be accessible in a manner
that would allow an adversary access to the key. We recommend that key generation be
somewhat cumbersome and require some direct hardware connection, such as an internal
jumper, so that a key change becomes direct evidence of a tamper.

Receiving Server

There are many options for key generation within the server. The same randomness
criterion applies to the server as to the instrument. Further, the same security for the
private keys applies to the server as to the instruments. Key generation should be
somewhat cumbersome so that it cannot happen by mistake, but not nearly so restrictive as
for the instruments. A standard software key generator from the registered cryptography
library can be used.

Authentication

The intent of the application of authentication not

interfere with clients that do not use authentication. 16367
Second, the proposed application is general enough
that actual use can adapt to system-level

\16367

requirements in any facility, as shown in the 16367
diagram. Here, we have two instruments B
connecting directly to clients without the use of \ @'\
authentication. We have two others that connect to 16368 16367
the same clients through a service that verifies the |, __ \

authentication. The last instrument connects to a 16368

different client that verifies the authentication
internally.

Transmitting Instrument 16369

The instrument’s private key is used only for ™~
authentication. The corresponding public-key is the
transmitting instrument’s certified signature of

legitimacy.

The secure hash function that is used to generate the message digest must be both well
known to be cryptographically secure and the mode of operation (padding, salting, CBF,
etc.) must be precisely known by both the transmitting instrument and the receiving client.

Encryption of the message digest must be performed using the instrument’s private key and
an algorithm that is known to be cryptographically secure.

Both the hash function and the encryption algorithm should be implemented using certified
cryptographic libraries..

Receiving Server

The server must validate the signature on the data from the transmitting instrument; either as
a general service or as contained within the client software specific to the instrument.

Because the key needed to verify the authenticity of the data is contained within the data,
the verification process can be handled in software using a certified library. It is necessary
that the verification process know the details of the implementation of the secure hash
function in the transmitting instrument.

Proposed Data Structure

The existing RadNet data structure must not be disrupted by adding authentication. There
are many applications which do not require authentication, and these must not be required
by the standard to implement unnecessary functionality.

We propose that 3 unassigned bytes in the header be designated for use by all cryptography
functions, including authentication and encryption. Values in this byte can indicate both the
presence of cryptographic functions and their type.

We propose that the cryptographic information always be appended to the end of a message
so that it does not interfere with existing structures. This approach allows the data-users of
RadNet to be completely unconcerned with the cryptography, and allows the cryptography
to adapt easily to any additions to the RadNet structure.

The authentication process will use two of the 3 reserved bytes in the message header to
contain the message length needed for generating the digest. The third byte will be used as
a flag to indicate the verification status.

Authentication requires the following additional data-space at the end of the RadNet
message:

64 bytes for the message digest
96 bytes for the public key
Total authentication space -- 160 bytes.

Original message with flag in header Variable Indicates authenticated message
Public key 96 bytes Transmitting instrument’s public key
Digest 64 bytes Signature

It is proposed that the RadNet message standard reserve 300 bytes for the cryptographic
information. This provides flexibility for longer keys, different algorithmic data, and larger
message digests in the future.

Encryption

The use of encryption must be optional within the RadNet Standard.

Although prudent cryptographic practice dictates that encryption never be implemented in
the absence of authentication; the RadNet Standard need not specify such implementation.

Because encryption makes the message totally unrecoverable in the event of a lost or
disrupted key, and because key management is critical to the security of the system as a
whole, we propose that encryption be implemented as a public-key envelope containing the
message. With encryption applied as an envelope, the envelope must be processed before
the contents can be exposed for use by other processing.

Transmitting Instrument

Encryption is performed in the transmitting instrument using the public key of the
connected server. This implies that the implementation includes a method for delivering
key to the instrument and that the instrument will store the server key in non-volatile
storage.

We propose that encryption be performed entirely in software using a registered library.
The entire signed message will be encrypted using a random key and a symmetric
algorithm. The symmetric key will be encrypted using the receiver’s public key. A
message header, the encrypted symmetric key, and the receiver’s public key will be pre-
pended to the encrypted message. The message header will constitute a new message type
and will consist of 3 bytes of all 1’s. This unique header will signify to the receiver and to
clients that the message is encrypted.

Receiving Server

The service that is accepting incoming messages will recognize the unique header for
encryption and route the message in accordance with the rules for the installation

Proposed Data Structure

We recommend the following header structure to accommodate key registration in addition
to the basic function.

Header 3 bytes All >FF Indicates encrypted message
Crypto-data 24 bytes Implementation dependent.

Public key 96 bytes Server’s public key

Secret key 5 bytes Encrypted secret key

Body Variable Encrypted message

PROPOSED ADDITION TO THE RADNET STANDARD TO
ACCOMMODATE AUTHENTICATION AND ENCRYPTION

Authentication

General

Authentication requires that the message length be known in order that the digest can be
reliably reproduced. Therefore, it is necessary that the message header contain that
information. In addition, it is necessary for the server-mode implementation that the clients
know if the message is valid or if it failed verification. This allows each client to take
application-specific action upon authentication failure.

Message Header

Reserved bytes 50, 51, and 52 are proposed to be used by the authentication process.

Bytes 50, 51 The length in bytes of the original message. If non-zero, indicates that
authentication is in effect. If zero, then authentication is not
implemented

Byte 52 “Invalid” flag. This byte is always set to zero when the message is

transmitted. Authentication services set this byte to a non-zero value if
the message fails signature verification. Clients check this byte with
zero meaning valid data; and take appropriate “bad data” action if the
byte is non-zero.

Message Structure

The RadNet message reserves 300 bytes at the end of the actual instrument message for the
authentication signature information. Exactly how these 300 bytes are used depends upon
the specifics of the signature algorithm and the size of the keys used in the application.
Because the verification process must be exactly consistent with the signing process, there
is no ambiguity. Different algorithms will use different structures, but there is no
opportunity for confusion since there must be no ambiguity in the pairing process.

Encryption

General

Because encryption hides all of the information in the RadNet packet, it is necessary to
create a special packet-type that signals the general receiving processes that the packet is
encrypted. Use of a normally-invalid header code will also cause a client that receives an
encrypted message in error to reject the message.

Message Header

Bytes 1to 3 Set to all ones (>FF) to indicate that the message is encrypted.
Bytes 4 to 128 Various crypto-data as needed, including keys and pointers.
Bytes 129 to end Encrypted message

